Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

Maurits H. Silvis¹,*, Hyunji J. Bae², F. Xavier Trias³, Mahdi Abkar⁴, Parviz Moin² and Roel Verstappen¹

70th Annual Meeting of the APS Division of Fluid Dynamics
Denver, Colorado, November 19 – 21, 2017

¹ University of Groningen, The Netherlands
² Stanford University
³ Technical University of Catalonia, Spain
⁴ Aarhus University, Denmark
* m.h.silvis@rug.nl
Introduction

Conclusions

• Rotating turbulent flows form a rich and challenging test case for large-eddy simulation

• Our new nonlinear subgrid-scale model improves predictions of the Reynolds stress anisotropy
Introduction

Rotating turbulent flows

Ubiquitous in nature and engineering
Introduction

Challenge

• Coriolis force
 – Conserves total kinetic energy
 – Transports energy from small to large scales of motion, reduces viscous dissipation of kinetic energy
 – Anisotropy

Why a challenge?

• Large-eddy simulation
 – Eddy viscosity models: focus on dissipation
 – Our focus: also capture transport effects
Large-eddy simulation

A new nonlinear subgrid-scale model

\[\tau^{\text{mod}} = -2\nu_e S_{\text{eddy viscosity}} + \mu_e (S\Omega - \Omega S)_{\text{nonlinear}} \]

- Describes dissipation
- Models well established
- ‘Stable part’ of gradient model
- Nondissipative
- Nondynamic coefficients based on vortex stretching magnitude

\[\nu_e = C_\nu \delta^2 \sqrt{2|S|} * f(|S\omega|^2) \quad \mu_e = C_\mu \delta^2 * g(|S\omega|^2) \]

- Nonlinear term represents energy transport in rotating homogeneous isotropic turbulence

Silvis et al. (2017), Phys. Fluids 29, 015105
Silvis et al. (2016), APS DFD Meeting
Large-eddy simulation

Code

- Incompressible Navier-Stokes solver
- Finite-volume method on a staggered grid
- Pressure projection method
- One-leg explicit second-order time integration method

- Second-order symmetry-preserving spatial discretization
 - Kinetic energy conservation by ...
 - convection
 - Coriolis force
 - nonlinear term of subgrid-scale model

Remmerswaal (2016), MSc thesis, University of Groningen
Spanwise-rotating plane-channel flow

Description

- Domain size: $2\pi d \times 2d \times \pi d$
- Periodic in x and z directions
- Constant pressure gradient in x direction
- Rotation about the spanwise axis

- Characterized by

\[
Re_\tau = \frac{u_\tau d}{\nu} \approx 395
\]
\[
Ro^+ = \frac{2\Omega d}{u_\tau} = 0 - 1000
\]

Grundestam et al. (2008), *J. Fluid Mech.* 598, 177
Spanwise-rotating plane-channel flow

Typical observations: Ro^+ dependence

- Mean velocity
 - Linear slope $\sim Ro^+$
 - Flow laminarizes with Ro^+

- Reynolds shear stress
 - ‘Turbulent’ and ‘laminar’ side
 - Flow laminarizes with Ro^+

\[Re_\tau \approx 395, \quad Ro^+ = 0 - 1000 \]
\[n_x \times n_y \times n_z = 128 \times 256 \times 128 \]
Spanwise-rotating plane-channel flow

Typical observations: Ro^+ dependence

- Mean velocity
 - Linear slope $\sim Ro^+$
 - Flow laminarizes with Ro^+

- Reynolds shear stress
 - ‘Turbulent’ and ‘laminar’ side
 - Flow laminarizes with Ro^+

\[Re_\tau \approx 395, \ Ro^+ = 0 - 1000 \]
\[n_x \times n_y \times n_z = 128 \times 256 \times 128 \]
Spanwise-rotating plane-channel flow

Typical observations: resolution dependence

- Mean velocity

 Ample opportunity for LES, even at $Re_\tau \approx 395$

- Streamwise stress anisotropy

 Traceless subgrid-scale models: Reynolds stress anisotropy

 Turbulent bursts

 Focus on ‘turbulent’ side

$Re_\tau \approx 395, Ro^+ = 100$

Winckelmans et al. (2002), Phys. Fluids 14, 1809
Spanwise-rotating plane-channel flow

Typical observations: resolution dependence

- Mean velocity

 \[\langle u_1 \rangle^+ \]

 \[x_2/d \]

 \[0 \] \[0.5 \] \[1 \] \[1.5 \] \[2 \]

 \[0 \] \[50 \] \[100 \]

 - Ample opportunity for LES, even at \(Re_\tau \approx 395 \)

- Streamwise stress anisotropy

 \[\sigma_{11}^+ \]

 \[x_2/d \]

 \[0 \] \[0.5 \] \[1 \] \[1.5 \] \[2 \]

 \[-5 \] \[0 \] \[5 \]

 - Traceless subgrid-scale models: Reynolds stress anisotropy
 - Turbulent bursts
 - Focus on ‘turbulent’ side

 \[Re_\tau \approx 395, Ro^+ = 100 \]

Winckelmans et al. (2002), Phys. Fluids 14, 1809
Numerical results

Large-eddy simulation with new nonlinear model

- Mean velocity

\[\langle u_1 \rangle^+ \]

- Observations
 - Dynamic Smagorinsky model provides best prediction
 - Eddy viscosity model close to no-model result
 - Nonlinear model does not improve or deteriorate this result
 - Similar observations for \(Ro^+ = 50, 75, 100, \ldots, 250 \)
 - Similar observations for \(n_x \times n_y \times n_z = 64^3 \)

\[Re_\tau \approx 395, \ Ro^+ = 100 \]
Numerical results

Large-eddy simulation with new nonlinear model

• Streamwise stress anisotropy

• Observations
 – Dynamic Smagorinsky prediction much less good
 – Nonlinear model improves shape and magnitude of stresses a lot
 – Similar observations for \(Ro^+ = 50, 75, 100, \ldots, 250 \), for the same model constants
 – Similar observations for \(n_x \times n_y \times n_z = 64^3 \), for the same model constants

\[Re_\tau \approx 395, \quad Ro^+ = 100 \]
Numerical results

Large-eddy simulation with new nonlinear model

- Streamwise stress anisotropy
- Observations
 - Dynamic Smagorinsky prediction much less good
 - Nonlinear model improves shape and magnitude of stresses a lot
 - Similar observations for \(Ro^+ = 50, 75, 100, \ldots, 250 \), for the same model constants
 - Similar observations for \(n_x \times n_y \times n_z = 64^3 \), for the same model constants

\[Re_\tau \approx 395, \ Ro^+ = 100 \]
Summary and outlook

Conclusions

• Spanwise-rotating turbulent plane-channel flows
 – A rich test case
 – Ample opportunity for large-eddy simulation

• New nonlinear subgrid-scale model
 – Improves predictions of the Reynolds stress anisotropy
 – No negative effects on the mean velocity

Outlook

• Further study of the nonlinear subgrid-scale model
 – Combine dynamic Smagorinsky model with nonlinear term
 – Combine with different subgrid characteristic length scale, δ
Thank you for your attention!

Maurits H. Silvis1,*, Hyunji J. Bae2, F. Xavier Trias3, Mahdi Abkar4, Parviz Moin2 and Roel Verstappen1

70th Annual Meeting of the APS Division of Fluid Dynamics
Denver, Colorado, November 19 – 21, 2017

1 University of Groningen, The Netherlands
2 Stanford University
3 Technical University of Catalonia, Spain
4 Aarhus University, Denmark
* m.h.silvis@rug.nl